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APPLIED PHYSICS LABORATORY

ABSTrRACT

N\ formula dens ed bN Noble has been generalized to obtain an espansioll
of the K roitecker delta f'unction as an inl'inite series insolsi ni the products~ of
mo5 la,:obi polx'noinlials.
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INTRODUCTION

In our ins estigations of the inviscid, incompressible flow of rotating fluid
shells confined between concentric, spherical, rigid, co-rotating boundaries.

m~k sC cnCOUntercd the need for a proof of a Kronecker delta function representa-
tion in terms of a series of products of two Jacobi polynomials. In particular,
%c required a proof that

2"

kkhcrc

F, (A) - E - --- ---- _ __-

An(k+,A+l+ )(k-+p,+ I

X x~j '(A 1'1' (A) ,( 0/ 1 . (2)

For (%Aj )> -- 1, the P,'3 '(A) are the Jacobi polynomials which are orthogo-
nal over the interval (-1, + 1) with the integration weight factor w M)
(I -- x) (l + x)". They are normalized by the relation Pn " )(I) = i(a, +n + )

*[F'(n i- i)F(c± + )], w ith F(z) the gamma (factorial) function. For (a,,(3) !s - 1,
the Jacobi polynomials' P,('' 3)(A) are defined in terms of the polynomials for
((x,0) > -I through repeated applications of the contiguous relations2

(2n + o t 1) P,, " (A) = (n + o(+ 3) P,,"' (A) - (n + 3) P,('-', (A) (3a)

K and

(2n - (k+ 3) 1),," ' (A) = (n + u + i) P,4'H + (it + i)P'(A ,) (3b)

with P4'-" (Al I and P-1'((A) =0.

S Certain sums involving products of two Jacobi polynomials have been previ-
ously evaluated (see, for example, Refs. 3 - 6). Our method for evaluating the
sumn in Eq. 2 employs mathematical procedures analogous to those which
Noble' used to show that 6

*~ ~ ". M1ag[Ws, F. Oberhettinger. and R. P. Soni. Fojrmulas anfd rheoretsOfor the Special Fun(-
,tions of Aathernatical Physics. Springer-Verlag. New York (1966).
1. S. (iradshtevn and 1. M. Ry/hik, Tables of Integrals, Series, and Products, Alan Jeffrey,
led , Academnic Press, Ness York (1965).
11. [. %ianocha and B. I . Sharma. "Some Formulae for Jacobi PQlynornials," in Proc. cami,.
Phil. So(., pp. 459-462 (1966).
1I, 1 - Manocha and B. I . Sharnma. Geinerating Functions of Jacobi Polynomials," in Proc,
('utnh. P'hil. Soc., pp. 431-433 (1966).

* II1. Noble, "'Some Dual Series Equations Ins ols'ing Jacobi Poly nornials.'' in Proc. ('arth. Phil.
So(.. pp. 363-3*7I (1963).
V.. R. Ian~en, A1 Table of Series and Products, F'rent ice- Hall. Ne%\ York I 1975).
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2''1(1 V) a(l +x) (x--y) +h -- IA(xy)

(a+ b-c) kPF(k+c+l)(2k+c+I) p( X ) P-,,. a (y) (4)
-- ) r(k+a+l)r(k+b+l)

where

= I if -1 !; y < X ! 1

0 if I < x _< Y I

PROOF

The proof is done in two stages: first the I = 0 case is treated, and then
the I e 0 case is analyzed. Both stages use the expansion of a function of two
variables in an infinite series of Jacobi polynomials of one variable and coeffi-
cients that depend on the other variable. In particular, the coefficients in the
expansion are obtained by respresenting the Jacobi polynomial as a finite se-
ries, evaluating the resulting elementary integrals, and re-summing the resul-
tant series.

In proving Eq. 1, it is convenient to use the relationship

-- I +X) . (x) for n > 1 (6)

in order to write Eq. 2 as

*I
F,..,._ - p (,-,,:. i (A)(2,u+ l)

(I+A) 2  (2k+,i+I+V)2 A) P(M A',(7)+ _ _ P A( "I / ':'* ( A ) -- k A _+ 1- ' ( A ) , (7 )8 k-I k(k+1)

where the first term is the k=0 term of the sum appearing in Eq. 2.
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CASE OF 1 0
For I = 0, we expand

(I+x)(I+Y) -(

= . C"(")(y) P, (  ), (8a)
k=O

where

h xif y > x
y if y < x. (8b)

Multiplying Eq. 8a by (1 +x)(i -x)') P,,' ' (x) and integrating from x
I -to I yields

(m + 1)2p 
5 /2C,"(

0  (y) 2 512

(m+u+3/2)(2m+p+5/2) -1+y)

x dx~l X) 'A
+  : P (11+:' ( ) d ( - ) (p + 3/2)

+[ d(l AMp4~ W() [ t~ -rI-) ~ dl+ v(I -- v| P" 0

+~ ~ ~ ~ -dxx(x)" P,,),+ ' 2 ).)( -)(x) :dI

20(l+y) (+ V- -4 dx(I-x) - g + 'l"(x)

The integrals are readily evaluated by expanding the Jacobi polynomial as'

= -y (m,ao, 3;r)( ~x)r (10a)
r =-

3

................................. (-)(') -)+:p...... .
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with

r y(m,a,f3;r) r(af+m+lnr(af+(+m+r+I)(-1/)r/

integrating each term; and re-summing the series. In particular,

(m + 1)2"+5/2 -C,/()=(yV(+ '

(mn+ A+3/2)(2m+,u+5/2)

M -2 r4 -7 /2 
2 1 +S/

2
+I r+

.y~~p '',lr) (r+Mu+ 3 / 2 ) (r+ 1)

x-Y L+ I IM~ yr~~T

(r+ 1 (k+3/2))r=

x [ 2 r+PA+7/2 2-SVA(+ -Y) r+]

(r+1)(r+,u+3/2)

=-2A+/ (+y) (m + I+3/2)2 P M(++I h(l (y]

___________ _ (11)

where the fact that

* y(m + l,pA+ /,- l;r +1)=

-(m + j± + 3/2)2
,y (mM + 11,l;r)/[2(r+)A+ 3/2)(r + 1))

is used to arrive at the next to the last line, and Eq. 6 is used in the final step.
Inserting this result in Eq. 8a yields

4
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2P ~~ (-w) -A")-
H(0 ) (xy)=

(+y)(1+X) (+ 1)

(2k ++ 5 /2) P"P+ (V 4A ()(I2a)
k=0 (k +1)2

or

2 'A +

\2A l 1-w/ (2 1A+l) 8

(2k +,u+ '2 ."y) (I2b)

k2 Pk,( Y) P_

with w defined by Eq. 8b. Since Po(")~ (A) = 1, comparing Eq. 7 with I
o to Eq. 12b with x=y=A yields

_ ( )'+ ) (13)
(2)A+1) ]-

which demonstrates that Eq. I holds for 1 0.

CAE
For 1 0, we consider

0for I : y 2) x-2t

H"' (x~v)r~p-+5/2) (I -+x y) - (A +3/2) (x-_y)]

fo f an ~x >y 1 (14)

Application of Leibnitz's rule for differentiating a product yields

I-I Y 1+1

W) (x,y) Es -(x-y)(15

5
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with +1 = 3/2)P(,u+ t+3/2)r (1)) -y)
r(A-I+5/2)r(t+2)r(t+ l)rI-t)

and U(x,y) I if 1 > x > y -1, and U(xy) =0 otherwise. The func-
tion HUl) (xy) is expanded in terms of Jacobi polynomials

H~(I (xy) = CA!~ (Y) Pk;' '~ x (16)
k=O

with the coefficients determined from

(m + 1) 9 1 5/

= H(")(xy) (x)I (lxPI+ )()dx

1-1 m
= S, r,y(m, 14-1+11,1;r) dx( i -xyu-+ 12+r (Xy)1+l 1 (17)
i=0 =O

The integral is evaluated by changing the variable from x to z M (x-y)l/(I -y),
which leads to

m

J11)2 ~,MI ,1;r)(1 _Y),,/+ V,+r+ 2 r(l + r+ 3/2)
r=O

, r(,u-+r+t+7/2) (8

Substituting for S, the inner summation appearing in Eq. 18 reduces to

(,+/)-I+512 _ rs+31 2+t )]

r~,)= (Mu-+/2)=1);-'+1 (-2r)

(1) 1(19)

For r + r2, we note that

6
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u+/2 a-2- + V Z I- I

(Ma/)(l,+ aI (l) 0 for r 0.
ar, (±-I+ 5/2) z'"11(20)

The derivative is zero at Z I because (I - 2 - r) < I1- 1. The fact that the
derivative reproduces the series in Eq. 19 can be readily verified by writing
the factor (I - )-1as a polynomial in z, differentiating each term, and then
setting z= 1. For I < r +2, we note that

ds s. I ~S
1 . + IS

(l)'-'r(Mu+ 5/2)r(r+ 1)

The multiple integral in Eq. 21 is readily evaluated by recalling that integra-
tion by parts leads to

ds1  ... (1 -se (sjf(s 1 )dsl. (22)
0 ~(j-l1)!

b The fact that the multiple integral reproduces the series in Eq. 19 can be
readily verified by writing (I - sj) '- as a polynomial in sj and integrating
each term separately. Inserting Eqs. 20 and 21 into Eq. 18 yields

()r ,+5/2) r=1

I(m,1) = r(1-1+r+312)r! for M - -
r (MA+52+r) (r+ 1-1)!

0 otherwise. (23)

* .Form 2tI 1, using the definition of y(m,,u-4 I ,l2 ;r) and introducing
the indices r' -r--(I - 1) and m' =m-(I - 1) leads to

7
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III') - __________

- min + A + /) r(4+ 5/2 -1

[(y- 1 )/2y r(in' +.u+l+ +r')

where the definition of -y(m-l+ 1, At+1+ V2, - l;r) was employed to obtain
the last line. Inserting Eqs. 23 and 24 into Eqs. 17 and 16 yields

- GA+ 
3 12 'r(/L+5/2) (2m+ji-1+5/2)

~j - r(I+5,2-/) m=I-1 (m+l)(m+±+312)

X P,( J('/2 1-(y) P,,(A-1+'4'I)(X) (25)

Changing the summation index to m' = m - (I - 1), writing the m' =0 term
separately, and using Eq. 6 in both the mn' = 0 and the mn' d0 terms lead to

H(1) (x.y) ( P~+/)[(+.I() + (~)Iy)
(l+x)r(,u+5/2 -1) L(2p+ 1) 8

(2XfM y (26)
M, ' (in' + 1) rnIpM,+'.)xj

Setting x=y= A in Eq. 26 and comparing with Eq. 7, one finds

H (A1A 2 -)r ( +5/2) )F..f 0, 1 60 , (27)

where the vanishing of W)' (AA) follows directly from the form of Eq. 15.
This completes the proof of Eq. 1.

8
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